SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

HYDROLOGY

Course Title:

HYD 110-5

Code No.:

WATER RESOURCES ENGINEERING TECHNOLOGY

Program:

FALL

Semester

SEPTEMBER, 1985

Date:

SUBHASH C. VERMA

Author:

New: Revision:

APPROVED:

Chairperson

Date j?

HYDROLOGY HYD 110-5

Course Name Course Number

PREREQUISITE; HYD 100

PHILOSOPHY/GOALS;

Recognize and identify the processes in the hydrologic cycle which are important for a variety of watersheds and watershed conditions. Measurement and instruments required for common hydrological problems both from quantity as well as quality point of view. Basic calculation/computation techniques, including simple deterministic modelling and stochastic analysis for the solution of common hydrological problems.

On the completion of the course, the student should be able to:

- Do measurement and estimation of hydrologic components including precipitation, evaporation, transpiration and infiltration.
- Do the volume balance for simplified hydrologic systems.
- Measure the quantities like stream flow velocity, elevation, precipitation and water levels and operation related hydrological equipment.

 Maintain a field book, interpret and analyze the data.
- To apply the principles of statistics to the historical data to make forecast about events including floods and droughts.
- Apply principles of hydrology to the prediction of precipitation and the calculation of peak runoff both for urban and rural watersheds.
- To develop unit hydrographs for small watersheds using the observed stream flow data or based on other watershed characteristics.
- Apply the principles of hydraulics and hydology in routing the flood wave and understanding of flood control measures.

METHOD OF ASSESSMENT AND EVALUATION:

The final mark will be assigned which is higher of either

- a) final examination
- b) weighted mark calculated as follows:

Laboratory Exercises	&	Assignment	Problems	25%
Midterm Examination				25%
Final Examination				50%

METHOD OF ASSESSMENT AND EVALUATION - Continued

- Eighty percent attendance is required for anyone to be considered for supplementary examination.
- Homework assigned is due after one week. Late submissions will be penalized.
- To pass the course, a student at least must secure 55% in one of the tests.
- This is subject to any changes.

GRADING:

A = 80-100%

B = 70-79%

C = 60-69%

TEXTBOOK (S);

Hammer, Mark J. and K.A. Mackichan (1981). <u>Hydrology and Quality</u> of <u>Water Resources</u>, John Wiley and Sons, Inc., Toronto.

REFERENCES:

Viessman, Warren Jr., J.W. Knapp and G.L. Lewis (1977). <u>Introduction</u> to Hydrology, 2nd Edition, Harper and Row Publishers, New York.

Linsley, R.K. Jr., M.A. Kohler and J.L.H. Paulhus (1982). <u>Hydrology for</u> Engineers, 3rd Edition, McGraw-Hill Book Company, Toronto.

Gray, D.M. (Editor-in-Chief) (1970). <u>Handbook on the Principles of Hydrology</u>, Water Information Center, Inc., Huntington, New York.

		NO.	OF	WEEKS
1.	<pre>introduction;</pre>		(2)	
	 hydrologic cycle water quantity water quality continuity equation horologic budget equation 			
2.	Precipitation		(2)	
	 measurement of rain and snow analytical methods for computing averages areal variation time variability of precipitation at a point maximum mean rain depth area curve rainfall intensity duration frequency curve 			
3.	Hydrologic Abstractions		(2)	
	 evaporation transpiration, evapotranspiration interception, depression storage infiltration estimation and measurement 			
4.	Stochastic Hydrology		(2)	
	probability approach to the analysis of hydrologic problemprobability distribution of hydrologic dataflood frequency analysis	າຮ		
5.	Stream Flow		(2)	
	stream ganging stationsmeasuring stream flow by current meteringdetermining stream flow by indirect methodsstream flow records			
6*	Rainfall-Runoff Relationships		(4)	
	 factors affecting runoff components of a hydrograph hydrograph analysis peak flow runoff rates unit hydrograph synthetic hydrograph flood routing control of floods 			

7.	Hydrology of <u>Imppunded Water</u>	(1)
	construction of reservoirsreservoir yieldthermal stratification	
8.	Water Resources Management	(1)
	water quality managementwater quantity management	